Clase de Biologia 6º

 

DOCENTE: MAURICIO MUÑOZ UNIVALLE 

                              I PERIODO     GRADO SEXTO

 INICIO DE CLASES

LA CÉLULA Y SU FUNCIONAMIENTO:



 ·   Clases de célula.

·   Estructuras que la componen

·   Funciones básicas de sus componentes

·   Formas celulares

 

HISTORIA
Las primeras aproximaciones al estudio de la célula surgieron en el siglo XVII; tras el desarrollo a finales del siglo XVI de los primeros microscopios. Estos permitieron realizar numerosas observaciones, que condujeron en apenas doscientos años a un conocimiento morfológico relativamente aceptable. A continuación se enumera una breve cronología de tales descubrimientos:

1665: Robert Hooke publicó los resultados de sus observaciones sobre tejidos vegetales, como el corcho, realizadas con un microscopio de 50 aumentos construido por él mismo. Este investigador fue el primero que, al ver en esos tejidos unidades que se repetían a modo de celdillas de un panal, las bautizó como elementos de repetición, «células» (del latín cellulae, celdillas). Pero Hooke solo pudo observar células muertas por lo que no pudo describir las estructuras de su interior.

Teoría celular

El concepto de célula como unidad anatómica y funcional de los organismos surgió entre los años 1830 y 1880, aunque fue en el siglo XVII cuando Robert Hooke describió por vez primera la existencia de las mismas, al observar en una preparación vegetal la presencia de una estructura organizada que derivaba de la arquitectura de las paredes celulares vegetales. En 1830 se disponía ya de microscopios con una óptica más avanzada, lo que permitió a investigadores como Theodor Schwann y Matthias Schleiden definir los postulados de la teoría celular, la cual afirma, entre otras cosas:

Que la célula es una unidad morfológica de todo ser vivo: es decir, que en los seres vivos todo está formado por células o por sus productos de secreción.

·Este primer postulado sería completado por Rudolf Virchow con la afirmación Omniscellula ex cellula, la cual indica que toda célula deriva de una célula precedente (biogénesis). En otras palabras, este postulado constituye la refutación de la teoría de generación espontánea o ex novo, que hipotetizaba la posibilidad de que se generara vida a partir de elementos inanUn tercer postulado de la teoría celular indica que las funciones vitales de los organismos ocurren dentro de las células, o en su entorno inmediato, y son controladas por sustancias que ellas secretan. Cada célula es un sistema abierto, que intercambia materia y energía con su medio. En una célula ocurren todas las funciones vitales, de manera que basta una sola de ellas para que haya un ser vivo (que será un individuo unicelular). Así pues, la célula es la unidad fisiológica de la vida.


El cuarto postulado expresa que cada célula contiene toda la información hereditaria necesaria para el control de su propio ciclo y del desarrollo y el funcionamiento de un organismo de su especie, así como para la transmisión de esa información a la siguiente generación celular.


TIPOS DE MEMBRANAS 

Tras dejar el espacio pericelular en nuestro viaje hacia la célula tropezamos con la membrana plasmática de la célula. Ésta es una estructura vital. La rotura de la membrana plasmática durante más de unos pocos segundos lleva irremisiblemente a la muerte celular. Es una barrera física que separa el medio celular interno del externo. En las células eucariotas, y en algunas procariotas, también hay membranas intracelulares que delimitan a los orgánulos, separando el medio interno del orgánulo del citosol. Es también una plataforma donde se llevan a cabo innumerables reacciones químicas e interacciones moleculares imprescindibles para las células.

1. Composición y estructura

Las membranas celulares están formadas por lípidos, proteínas y, en menor medida, por glúcidos. La estructura y la organización de las membranas celulares, así como sus propiedades, están condicionadas fundamentalmente por los lípidos. Éstos son moléculas anfipáticas, con una parte hidrofílica y otra hidrofóbica, que se disponen formando una bicapa lipídica donde las partes hidrofóbicas se encuentran en el centro de la membrana y las hidrofílicas en contacto con el agua (Figura 1). Entre los lípidos se anclan las proteínas denominadas integrales, que son aquellas que forman parte de la membrana de manera permanente. Las proteínas transmembrana son proteínas integrales que poseen secuencias de aminoácidos hidrofóbicos entre las cadenas de los ácidos grasos de los lípidos, y dominios hidrofílicos que están en contacto con la solución acuosa intra y extracelular. Otras proteínas se insertan sólo en una monocapa o se anclan a ella mediante enlaces convalentes a lípidos o a cadenas de ácidos grasos. Otro tipo de proteínas, denominadas asociadas, se unen temporalmente a una u otra superficie de la bicapa lipídica. Los glúcidos no aparecen en todas las membranas celulares, pero son abundantes en la superficie externa de la membrana plasmática, y en algunas intracelulares. Los glúcidos se encuentran unidos covalentemente a los lípidos o a las proteínas.

Por tanto las membranas son como láminas extensas que cuando se observan en secciones transversales, perpendiculares a sus superficies, con el microscopio electrónico presentan un aspecto trilaminar: dos franjas oscuras que corresponden con las partes hifrofílicas de los lípidos y una franja clara más ancha entre ellas que son sus cadenas de ácidos grasos. A esto se denomina unidad de membrana y es así para todas las membranas celulares. El espesor de las membranas varía entre los 6 y los 10 nm, lo cual indica que no todas las membranas son exactamente iguales.

Las propiedades fisiológicas y estructurales de las membranas dependen de la proporción y del tipo de moléculas que las componen: lípidos, proteínas y glúcidos. Así, la membrana de los eritrocitos de rata contiene un 50 % de lípidos, un 40 % de proteínas y un 10 % de glúcidos. Una proporción similar a ésta es la más común entre las membranas plasmáticas de todas las células animales, con algunas excepciones. Por ejemplo, la mielina (Figura 2) formada por las membranas plasmáticas de las células de Schwan, que rodean a los axones situados fuera del sistema nervioso central, contienen un 80 % de lípidos y un 20 % de proteínas. Las membranas intracelulares suelen contener una mayor proporción de proteínas que la membrana plasmática. La mayor diferencia la encontramos en las mitocondrias donde el porcentaje de proteínas de su membrana interna llega hasta el 80 %. Por supuesto, lípidos, proteínas y glúcidos son grupos heterogéneos de moléculas y también las membranas celulares se diferencian en la composición y en la proporción de distintos tipos de lípidos, de proteínas y de glúcidos. Además, como dijimos anteriormente, las membranas están en una constante renovación que permite a la célula cambiar su composición.

2. Propiedades

Parte de las funciones de las membranas son debidas a sus propiedades físico-químicas: a) es una estructura fluida que hace que sus moléculas tengan movilidad lateral, como si de una lámina de líquido viscoso se tratase; b) es semipermeable, por lo que puede actuar como una barrera selectiva frente a determinadas moléculas; c) posee la capacidad de romperse y repararse de nuevo sin perder su organización, es una estructura flexible y maleable que se adapta a las necesidades de la célula; d) está en permanente renovación, es decir, eliminación y adición de moléculas que permiten su adaptación a las necesidades fisiológicas de la célula.

3. Funciones

Cada tipo de membrana está especializada en una o varias funciones dependiendo del compartimento celular del que forme parte. Entre las múltiples funciones necesarias para la célula que realizan las membranas están la creación y mantenimiento de gradientes iónicos, los cuales hacen sensible a la célula frente a estímulos externos, permiten la transmisión de información y la producción de ATP, son necesarios para la realización del transporte selectivo de moléculas , etcétera. Las membranas también hacen posible la creación de compartimentos intracelulares donde se realizan funciones imprescindibles o la envuelta nuclear que encierra al ADN. En las membranas se disponen múltiples receptores que permiten a la célula "sentir" la información que viaja en forma de moléculas por el medio extracelular. Por ejemplo, dan a las neuronas sus propiedades y capacidades, también a las musculares. Tambén poseen enzimas asociadas que realizan numerosas actividades metabólicas, como la síntesis de celulosa o de ácido hialurónico, fosforilaciones, producción de energía, síntesis de lípidos, etcétera. La adherencia celular a la matriz extracelular o a otras células en los tejidos animales se debe a las moléculas presentes en la membrana plasmática.

En los siguientes apartados veremos los componentes moleculares, para después tratar las propiedades de las membranas celulares y algunas de sus funciones más importantes. En capítulos posteriores veremos que las membranas celulares de los orgánulos participan de forma determinante en sus funciones, en el trasiego de moléculas en el interior de la célula mediante el denominado tráfico vesicular, así como en la incorporación y liberación de macromoléculas entre el interior y el exterior celular en los procesos de endocitosis y exocitosis, respectivamente.


SEGUNDO PERIODO GRADO SEXTO 

CARACTERÍSTICAS DE LOS SERES VIVOS

 La vida es parte integral del universo. Como tal, buscar definiciones de la vida como fenómeno diferenciado es tan difícil (algunos dirían que inútil) como la búsqueda de la localización del alma humana. No hay una respuesta simple a la cuestión de "¿qué es la vida?" que no incluya algún límite arbitrario. Sin ese límite, o nada está vivo, o todo lo está.

Cualquiera de nosotros es capaz de reconocer que una mariposa, un pino o un pájaro carpinteros son organismos vivos.... mientras que una roca o el agua de mar no los están.

Con otras "cosas" es mas difícil encontrar el límite... Pese a su diversidad , los organismos que pueblan este planeta comparten una serie de características que los distinguen de los objetos inanimados.

Propiedades comunes a todos los seres vivos:

1. Organización y Complejidad. 

Tal como lo expresa la TEORÍA CELULAR (uno de los conceptos unificadores de la biología) la unidad estructural de todos los organismos es la CÉLULA. La célula en sí tiene una organización específica, todas tienen tamaño y formas características por las cuales pueden ser reconocidas. 
Algunos organismos estás formados por una sola célula -> unicelulares, en contraste los organismos complejos son multicelulares, en ellos los procesos biológicos dependen de la acción coordenada de las células que los componen, las cuales suelen estar organizadas en tejidos, órganos, etc.
Los seres vivos muestran un alto grado de organización y complejidad. La vida se estructura en niveles jerárquicos de organización, donde cada uno se basa en el nivel previo y constituye el fundamento del siguiente nivel, por ejemplo: los organismos multicelulares están subdivididos en tejidos, los tejidos están subdivididos en células, las células en organelas etc. 

Células vegetales                        hojas

2. Crecimiento y desarrollo. 

En algún momento de su ciclo de vida TODOS los organismos crecen. En sentido biológico, crecimiento es el aumento del tamaño celular, del número de células o de ambas. Aún los organismos unicelulares crecen, las bacterias duplican su tamaño antes de dividirse nuevamente. El crecimiento puede durar toda la vida del organismo como en los árboles, o restringirse a cierta etapa y hasta cierta altura, como en la mayoría de los animales.
Los organismos multicelulares pasan por un proceso más complicado: diferenciación y organogénesis. En todos los casos, el crecimiento comprende la conversión de materiales adquiridos del medio en moléculas orgánicas específicas del cuerpo del organismo que las captó.
El desarrollo incluye todos los cambios que ocurren durante la vida de un organismo, el ser humano sin ir mas lejos se inicia como un óvulo fecundado. Ver reproducción humana en detalle.


crecimiento y desarrollo humano= óvulo + espermatozoide= niño

3. Metabolismo.  

Los organismos necesitan materiales y energía para mantener su elevado grado de complejidad y organización, para crecer y reproducirse. Los átomos y moléculas que forman los organismos pueden obtenerse del aire, agua, del suelo o a partir de otros organismos. 
La suma de todas las reacciones químicas de la célula que permiten su crecimiento, conservación y reparación, recibe el nombre de metabolismo. 
El metabolismo es anabólico cuando estas reacciones químicas permiten transformar sustancias sencillas para formar otras complejas, lo que se traduce en almacenamiento de energía, producción de nuevos materiales celulares y crecimiento. Catabolismo, quiere decir desdoblamiento de sustancias complejas con liberación de energía. 



Ver en detalle:  Metabolismo /Fotosíntesis / Respiración celular

4. Homeostasis

Las estructuras organizadas y complejas no se mantienen fácilmente, existe una tendencia natural a la pérdida del orden denominada entropía.  Para mantenerse vivos y funcionar correctamente los organismos vivos deben mantener la constancia del medio interno de su cuerpo, proceso denominado homeostasis (del griego "permanecer sin cambio"). Entre las condiciones que se deben regular se encuentra: la temperatura corporal, el pH , el contenido de agua, la concentración de electrolitos etc. Gran parte de la energía de un ser vivo se destina a mantener el medio interno dentro de límites homeostáticos. 

5. Irritabilidad

Los seres vivos son capaces de detectar y responder a los estímulos que son los cambios físicos y químicos del medio ambiente, ya sea interno como externo. Entre los estímulos generales se cuentan:

Luz: intensidad, cambio de color, dirección o duración de los ciclos luz-oscuridad

Presión

Temperatura

Composición química del suelo, agua o aire circundante.

En organismos sencillos o unicelulares, TODO el individuo responde al estímulo, en tanto que en los organismos  complejos multicelulares existen células que se encargan de detectar determinados estímulos.

Ej. de células que captan la luz retina humana 









cloroplastos en células vegetales


6. Reproducción y herencia. 

Dado que toda célula proviene de otra célula, debe existir alguna forma de reproducción, ya sea asexual (sin recombinación de material genético) o sexual (con recombinación de material genético). La variación, que Darwin y Wallace reconocieran como fuente de la evolución y adaptación, se incrementa en este tipo de reproducción. La mayor parte de los seres vivos usan un producto químico: el ADN (ácido desoxirribonucleico) como el soporte físico de la información que contienen. Algunos organismos, como los retrovirus (entre los cuales se cuenta el HIV), usan ARN (ácido ribonucleico) como soporte.

Si existe alguna característica que pueda mencionarse como la ESENCIA misma de la VIDA, es la capacidad de un organismo para reproducirse

En realidad una definición abarcativa de lo que es un ser vivo podría ser: "todo aquello que sea capaz de reproducirse por algún mecanismo y responda a la presión evolutiva".

Aunque la característica genética de un solo organismo es la misma durante toda su vida, la composición genética de una especie, comprendida como un todo, cambia a lo largo de muchos períodos de vida. Con el tiempo. las mutaciones y la variabilidad en los descendientes proporcionan la diversidad en el material genético de una especie. En otras palabras, las especies EVOLUCIONAN. La fuerza más importante de la evolución es la selección natural, proceso por el cuales los organismos que presentan rasgos adaptativos (que le permiten adaptarse mejor al medio) sobreviven y se reproducen de manera mas satisfactoria que los demás sin dichos rasgos.

TERCER PERIODO GRADO SEXTO 

Tejido Animal y Vegetal

 La histología es una rama de las Ciencias Biológicas que se encarga del estudio de los tejidos. Un tejido es un conjunto de células organizadas que cumplen funciones comunes. Los tejidos son estructuras propias de los organismos superiores, presentes en vegetales y animales.

TEJIDOS VEGETALES
Los principales tejidos de estos organismos eucariotas son los tejidos de crecimiento, protector, de sostén, parenquimático, conductor y secretor.

TEJIDO DE CRECIMIENTO

También llamados meristemos, tienen por función la de dividirse por mitosis en forma continua. Se distinguen los meristemos primarios, ubicados en las puntas de tallos y raíces y encargados de que el vegetal crezca en longitud, y los meristemos secundarios, responsables de que la planta crezca en grosor. A partir de las células de los meristemos derivan todas las células de los vegetales.

TEJIDO PROTECTOR
También llamado tegumento, está constituido por células que recubren al vegetal aislándolo del medio externo. Los tegumentos son de dos tipos: la epidermis, formada por células transparente que cubren a las hojas y a los tallos jóvenes y el súber (corcho), que tiene células muertas de gruesas paredes alrededor de raíces viejas, tallos gruesos y troncos

TEJIDO DE SOSTEN
Posee células con gruesas paredes de celulosa y de forma alargada, que le brindan rigidez al vegetal. Son abundantes en las plantas leñosas (árboles y arbustos) y muy reducidos en las herbáceas.

TEJIDO PARENQUIMÁTICO
Formado por células que se encargan de la nutrición. Los principales son el parénquima clorofílico, cuyas células son ricas en cloroplastos para la fotosíntesis, y el parénquima de reserva, con células que almacenan sustancias nutritivas.

TEJIDO CONDUCTOR
Son células cilíndricas que al unirse forman tubos por donde circulan sustancias nutritivas. Se diferencian dos tipos de conductos: el xilema, por donde circula agua y sales minerales (savia bruta) y el floema, que transporta agua y sustancias orgánicas (savia elaborada) producto de la fotosíntesis y que sirven de nutrientes a la planta.

TEJIDO SECRETOR
Son células encargadas de segregar sustancias, como la resina de los pinos.

TEJIDOS ANIMALES
Los tejidos de los animales se dividen en cuatro tipos: epitelial, conectivo, muscular y nervioso. Los dos primeros son poco especializados, a diferencia de los segundos que se caracterizan por su gran especialización. Cabe señalar que estos cuatro tipos de tejidos están interrelacionados entre sí, formando los diversos órganos y sistemas de los individuos.

TEJIDO EPITELIAL

Las células de este tejido forman capas continuas, casi sin sustancias intercelulares. Se encuentra formando la epidermis, las vías que conectan con el exterior (tractos digestivo, respiratorio y urogenital), la capa interna de los vasos linfáticos y sanguíneos (arterias, venas y capilares) y las cavidades internas del organismo. Las células del tejido epitelial tienen formas plana, prismáticas y poliédricas, de dimensiones variables. Casi todos los epitelios contactan con el tejido conjuntivo. Las funciones del tejido epitelial son:
-Revestimiento externo (piel)
-Revestimiento interno (epitelio respiratorio, del intestino, etc.)
-Protección (barrera mecánica contra gérmenes y traumas)
-Absorción (epitelio intestinal)
-Secreción (epitelio de las diversas glándulas)

TEJIDO CONJUNTIVO
Es un tejido que se caracteriza por presentar células de formas variadas, que sintetizan un material que las separa entre sí. Este material extracelular está formado por fibras conjuntivas (colágenas, elásticas y reticulares) y por una matriz traslúcida de diferente viscosidad llamada sustancia fundamental. Las diferentes características de esta sustancia fundamental del tejido conjuntivo dan lugar a otros tejidos: tejido conectivo (o conjuntivo propiamente dicho), tejido adiposo, tejido cartilaginoso, tejido óseo y tejido sanguíneo.

1-Tejido conectivo: se distribuye ampliamente por todo el organismo, ubicándose debajo de la epidermis (dermis), en las submucosas y rellenando los espacios vacíos que hay entre los órganos. Cumple funciones de protección, de sostén, de defensa, de nutrición y reparación.

2-Tejido adiposo: sus células se denominan adipocitos y están especializadas para acumular grasa como triglicéridos. Carecen de sustancia fundamental. Los adipocitos se acumulan en la capa subcutánea de la piel y actúan como aislantes del frío y del calor. Cumplen funciones estructurales, de reserva y de protección contra traumas

3-Tejido cartilaginoso: formado por células (condrocitos) que se distribuyen en las superficies de las articulaciones, en las vías respiratorias (cartílagos nasales, laringe) y en los cartílagos de las costillas. Los condrocitos tienen forma variable y están separados por abundante sustancia fundamental muy viscosa, flexible y resistente. La función del tejido cartilaginoso es de soporte y sostén.

4-Tejido óseo: formado por osteocitos de forma aplanada, rodeados de una sustancia fundamental calcificada, constituida por sales de calcio y de fósforo que imposibilitan la difusión de nutrientes hacia las células óseas. Por lo tanto, los osteocitos se nutren a través de canalículos rodeados por la sustancia fundamental, que adopta forma de laminillas de fibras colágenas. El tejido óseo es muy rígido y resistente, siendo su principal función la protección de órganos vitales (cráneo y tórax). También brinda apoyo a la musculatura y aloja y protege a la médula ósea, presente en los huesos largos del esqueleto (fémur, tibia, radio, etc.).

5-Tejido sanguíneo: formado por los glóbulos rojos (eritrocitos), los glóbulos blancos (leucocitos), las plaquetas y por una sustancia líquida llamada plasma. La sangre permite que el organismo animal mantenga el equilibrio fisiológico (homeostasis), fundamental para los procesos vitales. Sus funciones son proteger al organismo y el transporte hacia todas las células de nutrientes, oxígeno, dióxido de carbono, hormonas, enzimas, vitaminas y productos de desecho.




Los eritrocitos contienen hemoglobina en su interior, lo que le da su coloración rojiza. Transportan oxígeno hacialas células y eliminan dióxido de carbono al exterior. Los glóbulos rojos de mamíferos tienen forma de disco bicóncavo y carecen de
núcleo. Otros animales, como algunas aves, tienen eritrocitos nucleados y de forma ovalada.

Los leucocitos tienen por función proteger al organismo de gérmenespatógenos y cuerpos extraños. Hay glóbulos blancos denominados polimorfonucleares, ya que poseen núcleos de distintas formas. Actúan en reacciones inflamatorias y son los neutrófilos, eosinófilos y basófilos. Aquellos leucocitos con núcleos redondeados y funciones específicas son los linfocitos y monocitos.

Las plaquetas son restos de fragmentos celulares provenientes de la médula ósea. Intervienen en la coagulación de la sangre.

El pasma es la parte líquida del tejido sanguíneo por donde se vehiculizan los glóbulos rojos, los blancos y las plaquetas. Está formado por agua, albúminas y globulinas (proteínas), hormonas, enzimas, vitaminas, glucosa, lípidos, aminoácidos y electrolitos (sodio, potasio, cloruros, fosfatos, calcio, bicarbonatos, etc.)

TEJIDO MUSCULAR
Está formado por células muy largas, compuestas por estructuras contráctiles llamadas miofibrillas. Las células del tejido muscular se denominan fibras musculares, y las miofibrillas que contienen aseguran los movimientos del cuerpo. Las miofibrillas están compuestas por miofilamentos proteicos de actina y miosina. Los miofilamentos son responsables de la contracción muscular cuando existen estímulos eléctricos o químicos. En cada miofibrilla hay miles de miofilamentos, cuya disposición da lugar a estructuras denominadas sarcómeros que permiten la contracción del músculo.

De acuerdo a la forma y al tipo de contracción, los músculos pueden ser esqueléticos, cardíacos y lisos.

-Músculo esquelético: Las fibras musculares son alargadas, poseen numerosos núcleos y bandas transversales que le dan un aspecto estriado. Tienen la facultad de contraerse de manera rápida y precisa en forma voluntaria.
-Músculo cardíaco: es similar a la fibra muscular esquelética, con aspecto alargado y estriaciones transversales, pero contiene un o dos núcleos centrales. El músculo cardíaco tiene una contracción involuntaria y se halla en las paredes del corazón.
-Músculo liso: de forma alargada, contienen un solo núcleo, se disponen en capas y carecen de estrías transversales. Se unen entre sí a través de una fina red de fibras reticulares. Sus contracciones son mucho más lentas que las que ejercen los músculos estriados y no tienen una acción voluntaria. Las miofibrillas lisas están ubicadas en las paredes de los capilares sanguíneos y en las paredes de los órganos internos como el estómago, intestinos, útero, vejiga, etc.

El tejido muscular tiene por función mantener la actitud postural y la estabilidad del cuerpo. Junto con los huesos controla el equilibrio del cuerpo. Los músculos también intervienen en las manifestaciones faciales (mímica) que permiten expresar los diferentes estímulos que provienen del medio ambiente. Además, protegen a los órganos internos (vísceras), producen calor debido a la importante irrigación sanguínea que tienen y le dan forma al cuerpo.

TEJIDO NERVIOSO

Está formado por células nerviosas llamadas neuronas y por células de la glia denominadas neuroglia.
-Neuronas: poseen formas diversas aunque por lo general estrelladas. Tienen propiedades de excitabilidad ya que recibe estímulos internos y externos, de conductividad por transmitir impulsos y de integración, ya que controla y coordina las diversas funciones del organismo. Las neuronas poseen prolongaciones citoplasmáticas cortas llamadas dendritas, y una más larga denominada axón, cubierta por células especiales llamadas de Schwann. La principal función de las neuronas es comunicarse en forma precisa, rápida y a una larga distancia con otras células nerviosas, glandulares o musculares mediante señales eléctricas llamadas impulsos nerviosos.

Hay tres tipos de neuronas, llamadas sensitivas, motoras y de asociación. Las neuronas sensitivas reciben el impulso originado en las células receptoras. Las neuronas motoras transmiten el impulso recibido al órgano efector. Las neuronas asociativas vinculan la actividad de las neuronas sensitivas y motoras. Las neuronas tienen capacidad de regenerarse, aunque de manera extremadamente lenta.

-Células de la glia: su función es proteger y brindar nutrientes a las neuronas. Forma la sustancia de sostén de los centros nerviosos y está compuesta por una fina red que contiene células ramificadas.

Importancia de los Ecosistemas

Los seres vivos que habitan en un lugar no solo viven juntos, sino que se necesitan unos a otros para alimentarse, reproducirse o simplemente para protegerse. También requieren de factores físicos y todos ellos se organizan para conservarse y subsistir. En los últimos tiempos la mano del hombre ha modificado mucho los ecosistemas, poniendo en peligro la supervivencia de los organismos. Cada elemento vivo y no vivo de los ecosistemas tiene una función importante que hay que preservar.

Tipos de Ecosistemas

Los Tipos de Ecosistemas pueden ser: según el grado de Intervención Humana, según el Medio en que se ubican y según su Tamaño.

A continuación explicaremos cada        uno:


Según el Grado de Intervención  Humana:


NATURALES: El hombre no ha intervenido en su formación, como los bosques, lagos,            desiertos.


ARTIFICIALES: El hombre interviene activamente en su formación, como la represas, parques,             jardines.

Según el Medio en el que se   ubican: 


TERRESTRES: como los desiertos, las cordilleras, la selva amazónica.

ACUATICOS: pueden ser de agua dulce ( ríos, lagos y lagunas) o de agua salada, mar,            océanos.

MIXTOS: como los que se encuentran en las orillas de los mares, ríos, lagunas o lagos.


Según su         Tamaño:


MICROSISTEMAS:

Tan minúsculos como una gota de agua, un florero con agua, una maceta, etc.

MACROSISTEMAS: tan grandes como el lago de Maracaibo, el mar Caribe, la cordillera de los Andes, etc.

Definición de Ecosistemas

 Los seres vivos están adaptados a las condiciones del lugar donde habitan: al clima, a la disponibilidad de agua, al suelo, etc. Además, entre los organismos se establecen complejas relaciones.

Llamamos ecosistema al conjunto formado por los seres vivos de un lugar, el medio físico y las relaciones que se establecen entre todos estos elementos.
Un bosque, una selva, una laguna o un desierto son ejemplos de ecosistemas. En estos lugares habitan diferentes seres vivos que se relacionan de muchas maneras. Cada uno de estos ecosistemas tienen características muy peculiares: no es lo mismo que un bosque frío y una pradera es muy distinta a un desierto.

TALLER ECOSISTEMAS - FORMATO WORD 

Descargar Aquí 

TALLER ECOSISTEMAS - FORMATO PDF

Descargar Aquí 

TALLERES INTERACTIVOS - ECOSISTEMAS

https://www.cerebriti.com/juegos-de-ciencias/los-tipos-de-ecosistema-

https://www.cerebriti.com/juegos-de-ciencias/tipos-de-ecosistemas

https://www.cerebriti.com/juegos-de-ciencias/los-tipos-de-ecosistemas-segun-el-medio

https://www.cerebriti.com/juegos-de-ciencias/diferentes-tipos-de-ecosistemas

 BIOMAS DE COLOMBIA Y EL MUNDO


 

 



Comentarios

Entradas populares de este blog

FÍSICA 9º y 10º

LIBROS - MÓDULOS VIRTUALES

Matemáticas 8º y 9º